Potentialities of Some Surface Characterization Techniques for the Development of Titanium Biomedical Alloys

نویسندگان

  • P. S. Vanzillotta
  • G. A. Soares
  • I. N. Bastos
  • R. A. Simão
  • N. K. Kuromoto
چکیده

Bone formation around a metallic implant is a complex process that involves microand nanometric interactions. Several surface treatments, including coatings were developed in order to obtain faster osseointegration. To understand the role of these surface treatments on bone formation it is necessary to choose adequate characterization techniques. Among them, we have selected electron microscopy, profilometry, atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) to describe them briefly. Examples of the potentialities of these techniques on the characterization of titanium for biomedical applications were also presented and discussed. Unfortunately more than one technique is usually necessary to describe conveniently the topography (scanning electron microsocopy, profilometry and/or AFM) and the chemical state (XPS) of the external layer of the material surface. The employment of the techniques above described can be useful especially for the development of new materials or products.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surface Characterization and Tribological Behaviour of Ti-Ni-P Intermetallic Coatings on Titanium Alloys

In this research, tribological behavior of Ti-Ni-P intermetallic coatings on titanium substrates have been investigated under dry reciprocating conditions. Hardness profile testing results exhibit that high surface hardness has been attained and static indentation result shows that the intermetallic coating has better adhesion strength than the conventional ceramic coatings. In this respect, th...

متن کامل

Surface Characterization and Tribological Behaviour of Ti-Ni-P Intermetallic Coatings on Titanium Alloys

In this research, tribological behavior of Ti-Ni-P intermetallic coatings on titanium substrates have been investigated under dry reciprocating conditions. Hardness profile testing results exhibit that high surface hardness has been attained and static indentation result shows that the intermetallic coating has better adhesion strength than the conventional ceramic coatings. In this respect, th...

متن کامل

Characterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique

Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...

متن کامل

CORROSION BEHAVIOR OF BIOACTIVATED TITANIUM DENTAL IMPLANT USING DIFFERENT CHEMICAL METHODS

At the past, damaged tissue was removed from the body of patients. But now tissue regeneration using scaffolds and implants are used to repair the damaged tissue and organs. Besides of the mechanical properties of metallic biomaterials, they suffer from bioinertness. Using some surface treatment techniques, the bioactivity and also corrosion resistance of titanium implants could be improved. In...

متن کامل

Evaluation techniques of metallic biomaterials in vitro

Metals and alloys are widely used as biomedical materials and are important in medicine and they cannot be replaced with ceramics or polymers at present mainly because of their high strength and toughness. Since safety is the most important property of biomaterials, corrosion-resistant materials such as stainless steel, Co–Cr–Mo alloy, commercially pure titanium, and titanium alloys are employe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004